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Abstract. This research deals with an overhaul-replacement policy for a 

repairable machine sold with a free replacement warranty (FRW), which will be 

used for a finite horizon T and evaluated at fixed interval s. At each evaluation 

point, the buyer considers three alternative decisions, i.e. (1) keep the machine, 

(2) overhaul it, or (3) replace it with a new identical one. If the machine fails 

during the warranty period, this is rectified at no cost to the buyer. Any failure 

occurring before and after the expiry of the warranty is restored by minimal 

repair. An overhaul-replacement policy was formulated using a dynamic 

programming approach. The results show that overhaul rejuvenation may extend 

the machine life cycle and delay the replacement decision. In contrast, the 

warranty stimulates early machine replacement and in so doing increases the 

replacement frequency for a certain range of replacement costs. This implies that 

in order to minimize the total ownership costs over T, the buyer needs to consider 

the minimal repair cost reduction due to the rejuvenation effect of an overhaul as 

well as the warranty benefit due to replacement. Numerical examples are 

presented for both illustrating the optimal policy and describing the behavior of 

the optimal solution. 

Keywords: dynamic programming; minimal repair; overhaul; replacement; warranty. 

1 Introduction 

We consider a machine that is used as a means of production. Failure of the 

machine will cause losses, either because of delayed completion, decreased 

production, or process inefficiency [1-3]. In the case where the machine has an 

increasing failure rate, it is reasonable to overhaul or replace it before its 

performance falls below the standard. Optimal replacement models can be 

classified in many different categories [4-6].  

A warranty is a contractual agreement between a manufacturer and a consumer 

to establish liability in case of a premature failure of an item or inability to 

perform its intended function. One type of warranty that is usually offered for 
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repairable products is the free replacement warranty (FRW) [7]. If the machine 

fails within the FRW warranty period, the manufacturer agrees to repair or 

replace the failed product at no cost, such that the buyer only suffers the cost 

due to interruption of production. Most research on warranties focuses on 

reducing the warranty cost, which is an issue of great interest to manufacturers 

[8]. They deal mainly with the optimal strategy from the manufacturer’s 

perspective, i.e. to minimize the expected warranty cost over the warranty 

period [9-11]. Meanwhile, [12] and [13] have shown that the warranty has a 

significant impact on the total operation and maintenance costs borne by the 

buyer. The optimal strategy for the buyer should be determined under a life-

cycle context [14]. There are researches that address this issue from the 

viewpoint of the consumer. To mention a few among them are the following. 

Optimal post-warranty preventive maintenance policies have been developed to 

minimize the expected long-run maintenance cost per time unit [15]. The 

customer who owns the equipment may offer improved preventive maintenance 

to negotiate a better warranty contract [16]. 

Most researches on maintenance and replacement are analyzed under an infinite 

horizon assumption. However, most system life cycles are finite, in which case 

it is important to consider optimal policies under a finite horizon. Three 

common infinite horizon models, i.e. periodic replacement with minimal repair, 

block replacement and simple replacement, have been modified to finite-span 

replacement models in [17]. A threshold on the current system state and a 

threshold on the residual life cycle have been considered in modeling finite 

horizon replacement decisions for a multi-state system in [18].  

An equipment replacement model for a system that is required only for a 

specified length of time in order to fulfill a specific contract has been developed 

in [19]. The work was motivated by an interest in studying the validity of 

applying an infinite-horizon solution–i.e. to replace an asset at its economic 

life–to a finite-horizon problem. Formulated as an integer-knapsack model and 

solved by using dynamic programming, it presents a different approach to 

bound the number of times an asset is utilized at its economic life during the 

considered period. The study was intended to examine the application of asset 

economic life in a finite-horizon equipment replacement problem by 

considering the time value of money. The authors developed a simple bounding 

technique in dynamic programming. None of the papers cited above considers 

the overhaul option and the warranty benefit in a replacement decision.  

Our research deals with optimal overhaul-replacement policies for a machine 

sold under warranty from the buyer’s point of view. Our work is motivated by 

an interest in the interaction effects of warranty advantage and overhaul benefit 

toward the buyer’s optimal policy. In a previous research, we have modeled an 
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optimal replacement model for a repairable machine sold with warranty under a 

finite horizon planning [20]. In the present study, we extended this by adding 

the overhaul consideration into the buyer’s decision. Applying a periodic 

decision approach, we further developed a dynamic programming model that 

has been used in many equipment replacement optimization studies ([21,22]). 

The model is used to minimize the total expected ownership costs over T, which 

consists of expected minimal repair cost, overhaul cost and replacement cost.  

This paper is organized as follows. Section 1 describes the background of the 

research and indicates the research gap. In Section 2 we present system 

characterization. In Section 3 we present model formulation, along with the 

analysis to prove the existence of an optimal solution and discuss some 

underlying situations for the overhaul and replacement decision. In Section 4 we 

present some numerical examples. Finally, in Section 5 we provide conclusions 

and discuss the extension of our work.  

2 System Characterization  

We consider a repairable machine sold under a free replacement warranty 

(FRW). The machine is planned to operate as a means of production for a finite 

horizon, T (T<). To maintain the machine’s performance, it is evaluated N 

times during T (Figure1). The interval between evaluation points s (s<T) is 

constant, so T = N.s where N takes integer values.  

 

Figure 1 Evaluation points at each end of operation period s. 

At j=0 a new machine begins to operate. At each evaluation point j (j=1,…N-1) 

the consumer has the alternatives to (1) keep the machine, (2) overhaul it, or (3) 

replace it with a new identical one. We assume that machine operation will 

terminate at the N
th
 evaluation point. 

2.1 Failure Modeling 

Machine failures are modeled using a black-box approach, so the damage 

mechanisms are not specifically considered [23]. The occurrence of failures 
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along the time axis is represented by a point process with intensity function 

(), an increasing function of . Any failure is detected instantly and minimally 

repaired. Under minimal repair a failed machine is restored to its condition 

immediately before the failure. Thus the conditional failure intensity function is 

unaffected by each failure. This is appropriate for the situation of a multi-

component machine [24]. The rectification of the failed components has a 

negligible effect on the remaining components. If the time required to conduct 

minimal repair is negligible, then the machine continuously experiences 

deterioration and the occurrence of failures during s follows a non-

homogeneous Poisson process [25]. Let t represent the age of the machine. 

Assuming minimal repair occurrence, the expected number of failures during s, 

h(t,t+s), is given by (1):  

 



st

t
dstth  )(),(

      (1) 

2.2 Warranty 

The machine is sold under a free replacement warranty with a warranty period 

of w. w is an integer multiplication of s (w=n.s). Any failure that occurs during 

w will be repaired by the seller with no charges to the buyer. In such situation 

the buyer still bears some cost, c1, due to less desirable quality products 

produced during the transient condition after the machine was repaired 

minimally. After the warranty expires the consumer will bear the total repair 

costs as well as losses due to disruptions in the production process, c2, whereby, 

c1<c2. If  denotes the minimal repair cost per failure incurred, then the value of 

 depends on the machine age t as follows: 

 wt

wt

c

c










,

,

2

1
       (2) 

2.3 Overhaul Modeling 

Overhaul is defined as a planned systematic effort (check, detect, treat or 

replace components) in order to maintain machine performance at a certain 

level. A number of models assume overhaul to improve the performance of the 

machine by rejuvenation. Thus, after overhaul the machine has a virtual age that 

is younger than the actual age, or a lower failure intensity but not to the point 

that the equipment is as good as new [26]. Two virtual-age models have been 

examined in [27]. One of these is a permanent rejuvenation model, which 

assumes that due to overhaul the difference between actual age and virtual age 

is always the same. Using this approach, in this research we consider overhaul 

as an action that decreases the machine’s age with a constant reduction . 
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Overhaul will not restore the machine to be as good as a new machine that is 

still under warranty. Therefore overhaul may only be carried out after the 

machine age t, t>w+. We express  as an integer multiplication of operation 

interval s ( =ks, k = 1,2,...). Furthermore, we assume that the time required to 

conduct overhaul is considered to be negligible. Consequently, any overhaul at j 

for a t-old machine will immediately reduce the machine’s age to t-. The 

overhaul cost is c3, which is higher than the minimal repair cost. As a result 

c1<c2<c3. 

2.4 Decision Alternatives 

At any j, there are three decision alternatives to choose from. If we choose to 

keep operating the machine then, due to aging, machine failure as well as 

minimal repair costs will increase. If the decision is to overhaul then the cost for 

the machine overhaul will be incurred but it also reduces the failure intensity 

due to machine rejuvenation. Lastly, if the decision is to replace the machine 

then a notable cost incurs for replacing the machine, however, it is restored to a 

new one and this significantly reduces repair costs during the warranty period. 

Assuming the machine’s operating cost is constant, the expected total 

ownership costs are the accumulation of expected minimal repair costs, 

overhaul costs and replacement costs over T.  

 

The mathematical model is formulated to minimize the expected total costs of 

machine ownership throughout T. A constraints that was considered is the 

requirement to be able to operate the machine during the whole considered 

planning horizon. Minimizing the total machine ownership costs is done by 

choosing a decision at every j (j=1,…N), which can be expressed as a function 

of the sequential decisions taken during the planning period, represented by the 

following steps. 

3 Dynamic Programming Formulation and Analysis 

The model is developed from the buyer’s point of view and system performance 

is measured by the total ownership costs over T. We apply dynamic 

programming to formulate the overhaul-replacement problem of a warranted 

machine [28]. Let xj denote the action taken at j, j=1,2…N-1. The stages in this 

problem refer to evaluation points j. Each stage has a number of states that refer 

to machine age t. We consider two types of costs, i.e. minimal repair cost 

(within warranty period c1 and after warranty expiry c2), decision cost i.e. 

overhaul cost c3, and replacement cost c4. We assume that the highest cost is 

replacement cost c4, therefore c1<c2<c3<c4. Overhaul is modeled as an action 

that generates machine rejuvenation with constant age reduction. If the machine 

is overhauled at age t then the machine’s virtual age after overhaul will be t-, 
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where  is constant [29]. Figure 2 shows the relationship between state t at j, 

decision xj and its contribution to the machine’s state at j+1.  

 

Figure 2 Relationship between machine state t at stage j, decision xj and its 

contribution to the j+1
th

 state. 

If at j we have a machine with an age of t and the decision is to keep it (K) then 

at the next evaluation point (j+1), the machine age will be t+s. If the decision is 

to overhaul (O) at j then we start operation at j with machine age t-, where  is 

the age reduction due to rejuvenation. Therefore at the next evaluation point 

(j+1), the machine age will be t-+s. Lastly, if the decision is to replace (R) then 

at j the machine age returns to zero and at the next evaluation point (j+1) the 

machine age will be s. At time j=0, the buyer starts with a new machine and will 

determine the sequential decision at j=1,2,N-1, i.e. either to keep operating, to 

overhaul, or to replace the machine. In general, the buyer will want to maximize 

the benefit of the warranty that is attached to the replacement decision. 

Therefore during the warranty period, the buyer’s decision will always be to 

keep the machine, while replacement of the machine should be carried out in 

such a way that at j=N the warranty of the machine on hand has expired. If the 

machine age is t, then the decision at j, xj, is given by: 
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  (3) 

Next we obtain the dynamic programming formulation for the overhaul-

replacement problem. Let       be the total cost of running a machine with age t 

from j to N. Then       is the summation of keep, overhaul, or replacement 
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costs at j, the associated minimal repair cost, and the lowest total ownership 

costs for the remaining stages (stage j+1 onward). Moreover, we define   
     as 

the best value of       for the optimal decision,   
 . For e(t) is the machine 

salvage value with an age t by using (1), (2), and (3), the associated costs at j for 

each     are presented in Table 1. 

Table 1 Decisions at j, xj  and the associated costs for the current stage and 

onward. 

   
Decision Cost and the 

Associated Minimal 
Repair Costs at j 

State 
at j+1 

Total Costs at j and the Remaining 
Stages 

K ( , )h t t s   t+s 
*

1( , ) ( )jh t t s F t s    

O 3 ( , )c h t t s       t-+s 
*

3 1( , ) ( )jc h t t s F t s           

R 4 ( ) (0, )c e t h s   s 
*

4 1( ) (0, ) ( )jc e t h s F s     

 

Our purpose is to seek the optimal sequential decisions (keep, overhaul, or 

replace) that minimize *

0 ( )F t . From Table 1 we define *( )jF t  as a recursive 

equation at stage j for a machine with age t that minimizes the total ownership 

costs at stage j and onward by choosing xj. The dynamic programming 

formulation of optimal overhaul-replacement policies is then given by:  

 

*

1

*

* 3 1

*

4 1

( , ) ( )
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( , ) ( )
( ) min

, ,

( ) (0, ) ( )
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j j

x K h t t s F t s

t j N

x O c h t t s F t s
F t

t w j N w

x R c e t h s F s

t w j N w



   

 









    


  



       
 

    



   
   

 (4) 

At the end of the planning period (j=N),   
    , the boundary condition, is equal 

to the salvage value of the machine, given by: 

 
* ( )NF e t    (5) 

A backward approach is used to obtain the optimal ownership costs at j and its 

optimal decision   
  from j=N-1, j=N-2, up to j=1. Once   

  is obtained the 

optimal policy can be obtained. The optimal policy in stage one (j=1) is used to 

find the state at j=2. Then we can find the optimal policy in stage two,   
 , 

which is used to find the state at j=3. This approach is done up to j=N. Finally, 
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we obtain the optimal sequential decisions from j=1 up to j=N that give the 

minimum total ownership costs over T, )(*

0 tF .  

This simple recursive pattern of dynamic programming results in a relatively 

short planning horizon problem along with a slight range of model parameters 

that can be solved in Microsoft Excel. For solving a problem with a longer 

planning horizon and considerable variation in model parameters, we need to 

build a computer program to obtain the optimal policy. In the following section, 

we carry out a model analysis to prove the existence of an optimal solution.  

3.1 Existence of Optimal Solution 

For   
 , given by (4), there exists an optimal solution that minimizes )(*

0 tF  

given by the decision policy },...,,{ *

1

*

1

*

0

*

 Nxxx . We use an induction proof 

to show the existence of an optimal solution for our model. First we specify the 

space state at any stage, i.e. the machine’s age at any j (j=1,2,…N-1) as jt , 

      .    {          }. 

We denote ),( jjj xtG as the current stage’s costs, i.e. the decision cost at j and 

the associated expected minimal repair cost: 

 

,

3

4

( ) ,

( , ) ( , ),

( ) (0, ) ,

j j j

j j j j j j

j j

h t t s x K

G t x c h t t s x O

c e t h s x R



  



 


     
   


 (6) 

The state in the successive stage 1jt  depends on the decision taken at the 

current stage. We denote: 

 1

, , , 0,1,..., 1

, , , ,...,

, , , ,..,

j j j

j j j j

j j

t s x K t j N

t t s x O t w j w N w

s x R t w j w N

   

    


         
   

 (7) 

Since w and  are defined as integer multiplications of s, all feasible xj may 

facilitate every movement from any j
t

 
to one 

1j
t . 

Using (6) and (7) we rewrite (4), the best total ownership costs at a particular j, 

as: 

 * * *

1 1
{ , , }

( ) ( , ) min ( ( , ) ( ))
j

j j j j j j j j j
x K O R

F t F t x G t x F t 


     (8) 
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Using the principle of optimality of dynamic programming we can show that for 

any j, (j=0,1, 2,…N-1) if there exists an 
*

jx  for a certain jt
 
that satisfies (8), 

then we can find 
*

1jx . 

For j=N; 

As N is the last stage, there is no cost to be considered and the machine is sold. 

To be specific, at the end of the planning horizon, the warranty should be 

expired, so possible states Nt
 
are finite, i.e.  , , ,...,N N Nt T T w w s Ns   .  

As the salvage value of the machine depends on its age, we can rewrite (5) as: 

 * * ( ) ( ),N N N N N NF F t e t t T     (9) 

We proceed to show the existence of an optimal solution at j=N-1 by using 
* ( )N NF t . 

For j=N-1; 

At j=N-1, the state spaces 1Nt  are finite, i.e. 1 1 1,N N Nt T T   

 , ,...,( 1)w s w N s  . Using (8), the optimal expected cost at stage N-1 can be 

expressed as:  

 
1

* *

1 1, 1 1 1 1
{ , , }

( ) min ( ( , ) ( ))
N

N N N N N N N N
x K O R

F t x G t x F t


     


   (10) 

From any 
11 


NN

Tt  there exists at least one feasible      {     } that 

facilitates movement to one N Nt T  in the subsequent stage. Hence it follows 

that from all feasible solutions      there is at least one *

1Nx 
 that gives the 

minimum ownership costs for the last period to go. As a result, at j=N-1 the 

optimal solution 
*

1Nx  can be obtained for all 
11 


NN

Tt .  

Continuing the backward process until stage 0, we will certainly obtain optimal 

decision sequences for the remaining stages, i.e. 
*

0

*

3

*

2 ,...,, xxx NN  . Finally, we 

have },...,,{ *

1

*

1

*

0

*




N
xxx that minimizes )(*

0 tF .  

3.2 Necessary Condition for Overhaul 

For any j and t (tw +) we perform overhaul with cost c3, which will reduce 

the age of the machine from t to t-. We consider a non-warranted situation 
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(w=0 and c1=c2). Using Eq. (4), we obtain the necessary condition at j where 

overhaul is better than keep operating (11). 

 
* *

1 1 3( ( , ) ( , )) ( ( ) ( ))j jh t t s h t t s F t s F t s c                 (11) 

As h(t) and Fj(t) are increasing functions in t [20], the left hand side of (11) also 

increases in t. The first term on the left hand side of (11) shows minimal repair 

cost reduction due to overhaul only at j, while the second term represents the 

additional benefit in the remaining stages. Note that if →0, then doing 

overhaul or keep operating the machine at j are equally attractive. To 

accomplish (11), the rejuvenation effect  has to be sufficiently large to produce 

minimal repair cost reduction both at j and the remaining stages. Using Eq. (4), 

we also obtain the necessary condition at j where overhaul is better than 

replacement (12).  

* *

4 1 1 3( ( )) ( ( , ) (0, )) ( ( ) ( ))j jc e t h t t s h s F t s F s c                    (12)
 

For  approaches t, the machine’s condition after overhaul is about as good as 

new and the second and the third term on the left hand side of (12) nearly turn 

to zero. In this case, the only factor that prevents accomplishment of (12) is a 

high salvage value, e(t), of the machine on hand. For a non-warranted situation, 

the decision to overhaul at j is only attractive if the rejuvenation effect is 

significant relative to c3. One factor that may have the opposite effect is the 

second-hand resale value of the machine on hand. 

3.3 Interaction Effect of Overhaul and Warranty 

The benefit of the warranty stimulates early replacement [20]. We develop the 

necessary condition at j for replacement is better than overhaul using (4) and 

(2). For w=1 we obtain (13). 

* *

2 1 1 1 4 3( ( , ) (0, )) ( ( ) ( )) ( ( ))j jc h t t s c h s F t s F s c e t c                 (13) 

The first term and the second term on the left hand side of (13) is always non-

negative, since h(t) and Fj(t) are increasing functions in t, and c2>c1. 

Consequently, the necessary condition for choosing replacement at j can be 

accomplished if one of the following conditions is satisfied.  

 4 3 2 1( ) ( , ) (0, )c e t c c h t t s c h s       
 

(14) 

 
* *

4 3 1 1( ) ( ( ) ( ))j jc e t c F t s F s      
 

 (15) 

The distinctive parameters of the model developed are the overhaul rejuvenation 

effect  and the warranty benefits represented by w and     ⁄ . Therefore, to 

discuss the underlying buyer’s decision to replace we consider only Eq. (14). 
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The value of the right hand side of (14) is associated with the disparities of c1 

and c2, which indicate how significant minimal repair cost is to the buyer 

compared to the losses due to process disruption. Reduction of the left hand side 

of (14) may happen due to a decrease of c4 or an increase of e(t) as well as an 

increase of c3. This situation shows the buyer’s underlying decision in choosing 

replacement, i.e. a reasonable price for a new machine along with an expensive 

minimal repair cost or a good salvage value of the machine. In addition, if the 

overhaul results are insignificant and costly, then the buyer’s best decision at j 

is to choose replacement.  

4 Numerical Examples  

In this section, we present some numerical examples to illustrate the optimal 

solutions of the model developed. We consider that the machine has an 

increasing failure rate, which can be represented by a power law function, (): 

 
1( )       , >0, >0, >1  (16) 

The machine will be used for the next twelve years, has a two-year warranty 

and will be evaluated each year. Hence, we have T =12, N=12, s=1, and w=2. 

The failure intensity function parameter is =2. The replacement cost c4 is 

1250. The machine’s price decreases by 40% within the first year and in each 

subsequent year the price will fall by 15%. Then, the resale price of the machine 

with age t is: 

                                      (17) 

Overhaul cost c3 is 250 and machine rejuvenation  due to overhaul is two 

years,  = 2. The minimal repair cost per failure occurrence during warranty c1 

is 171. After the warranty has expired minimal repair cost c2 is 190.  

4.1 Effect of Variations in  

To show how the model solutions respond to the different failure rates we use 

several values of  ( = 1.20, 1.25, 1.35). The optimal policies are shown in 

Table 2 and Figure 3. The optimal solutions obtained from different values of  

show that the decision to overhaul is only considered for a machine with a low 

failure intensity. For a machine with a higher failure rate it is cheaper to 

perform frequent replacement than to do overhaul and keeping the machine on 

hand. 
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4.2 Effect of Variations in  

To demonstrate how rejuvenation effect  influences the optimal policies, we 

apply different values of  ( =1, 2, 3) by using  = 1.25 but keep the same 

value of the other parameters. The results are shown in Table 3 and Figure 4. 

An increasing rejuvenation effect of overhaul leads to an increasing overhaul 

frequency over T and this results in significantly lower total ownership costs.  

Table 2 Optimal policies xj for  = (1.20, 1.25, 1.35). 

 
Optimal policies at j,   

  Optimal  

cost    
    

    
    

    
    

    
    

    
     

     
  

1.20 K K K O K O K O K K K 7101.86 

1.25 K K K K R K K K O K K 7725.58 

1.35 K K R K K R K K R K K 8615.43 

 

 

Figure 3 Machine age at stage j due to decision xj for several values of . 

Table 3 Optimal policies xj for  = (1, 2, 3). 

 
Optimal policies at j,   

  Optimal 

cost   
    

    
    

    
    

    
    

    
     

     
  

1 K K R K K K K R K K K 7756.64 

2 K K K K R K K K O K K 7725.58 

3 K K K K O K K O K K O 7611.09 
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Figure 4 Machine’s age at stage j due to decision xj for several values of . 

4.3 Effect of Variations in w 

We represent the benefit of the warranty using two parameters. Firstly, the 

warranty duration w, and secondly, the ratio of minimal repair costs during and 

after the warranty period,           ⁄ . To show how the model solutions 

respond to different lengths of the warranty duration (w=1,2,3), we use  = 

1.25, while other parameters are kept the same. Table 4 and Figure 5 show the 

optimal solutions. 

Table 4 Optimal policies xj for  w=(1,2,3). 

W 
Optimal decisions at j,   

  Optimal  

cost   
    

    
    

    
    

    
    

    
     

     
  

1 K K O K O K O K O K K 7286.32 

2 K K K K R K K K O K K 7725.58 

3 K K K R K K K R K K K 7577.66 

 

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12

M
a

ch
in

e 
a

g
e 

(y
ea

rs
) 

Stage

  3

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12

 1
M

a
ch

in
e 

a
g

e 
(y

ea
rs

) 

Stage

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12

M
a

ch
in

e 
a

g
e 

(y
ea

rs
) 

Stage

  2



478 Kusmaningrum Soemadi, et al. 

 

Figure 5 Machine’s age at stage j due to decision xj for several values of w 

The longer the warranty period, the higher the benefit obtained by the buyer and 

hence it will stimulate the buyer to buy a new machine and induce early 

replacement. Using the model parameters above, if the seller only offers a one-

year warranty then the buyer’s optimal policy is to overhaul the machine four 

times with no replacement during twelve years. But if the seller increases the 

warranty period to three years, then the buyer’s optimal policy is to replace the 

machine twice during the planning horizon considered (in the fourth and eighth 

year). From Figure 4 and Figure 5 we can show that rejuvenation due to 

machine overhaul and warranty length have the opposite effect on the buyer’s 

decision at j.  

4.4 Effect of Variations in r 

We now want to show how the model solutions respond to different values of r

 
21

ccr  . Table 5 and Figure 6 show optimal policies for  = 1.20 and 

r=(65%, 70%, 90%). During the warranty period, the minimal repair cost is 

fully borne by the seller, while the buyer only experiences undesirable product 

quality cost c1 caused by production process disturbances. Figure 4 describes 

how different losses due to process disruption influence the optimal solution. 

The greater the disparities between c1 and c2 or the smaller r indicates that the 

minimal repair cost is more considerable compared to the loss due to production 

process disruption. As a result, free minimal repair offered by the seller during 

the warranty period is quite valuable from the buyer’s point of view. In such a 
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situation, for a certain range of replacement cost c4, the buyer’s optimal solution 

is to increase the replacement frequency over T. 

Table 5 Optimal policies xj for r = (65%,70%,90%). 

r 
Optimal decisions at j,   

  Optimal 

cost   
    

    
    

    
    

    
    

    
     

     
  

65% K K R K K K K R K K K 6679.60 

70% K K K K K R K K O K K 6807.82 

90% K K K O K O K O K K K 7101.86 

 

 

Figure 6 Machine’s age at stage j due to decision xj for several values of r. 

4.5 Effect of Variations in T 

The final numerical examples show how the model solutions respond to 

different lengths of T. Table 6 shows optimal policies for  = 1.25, r=90%, and 

T =(8,10,11,12). A sequential solution for a finite-horizon problem is always 

influenced by the closeness to the beginning of the period considered. 

Moreover, the model developed also limits the decisions near the end of the 

planning period. Figure 7 shows that the optimal decision obtained is sensitive 

to changes in the planning period considered. 
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Table 6 Optimal policies xj for T=(8,10,11,12). 

T *

3

*

1, . . . ,xx  *

4x  
*

5x  *

6x  *

7x  *

8x  *

9x  *

10x  *

11x  
*

12x  
Optimal 

 cost 

8 … O K O K --     4743.87 

10 … K R K K K K --   6229.75 

11 … O K O K O K K --  6977.36 

12 … K R K K K O K K -- 7725.58 

 

Figure 7 Machine’s age at stage j due to decisions xj for different lengths of T. 

5 Conclusions 

In this paper, we discuss a simple optimal overhaul-replacement model for a 

repairable machine sold under warranty, from the buyer’s point of view. The 

machine is a means of production that should be operated for a finite horizon 

planning. The buyer wants to minimize the total ownership costs over the 

planning horizon by considering overhaul in order to extend machine life. At 

the same time, the buyer also wants the benefit from the warranty that is 

attached to the decision to replace the machine. We develop a dynamic 

programming formulation to determine overhaul-replacement policies that 

minimize the total ownership costs over the planning horizon considered. The 

length of the warranty and the rejuvenation effect of overhaul were modeled as 

integer multiplications of the periodic evaluation span. We use a numerical 

approach to obtain the solution and solved the model with a computer program 

written in Visual Basic.  
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The model provides valuable insights into the structure of the optimal solution 

for machine replacement under warranty in a more complex situation. Using 

this model, the buyer can find the periodic optimal policy and the intended 

minimum cost as well as the replacement schedule and periodic amount of 

capital required. By understanding the interaction effects of the advantages of 

the warranty and the benefits of overhaul, the buyer can also attempt to make an 

overhaul improvement and avoid costly frequent machine replacement. 

Manufacturers can also use this model, in particular to understand the 

customer’s underlying decision to replace in the context of the machine’s life 

cycle and the customer’s purchase behavior. The manufacturer could consider 

improving the offered benefit, such as extending the warranty length, to 

promote sales. The replacement overhaul-model for a warranted machine with a 

Markovian deterioration model and overhaul rejuvenation being a function of 

the machine’s age are other topics of research currently being investigated by 

the authors. 

Nomenclature 

The following notation was used in developing the proposed model. 

c1 : minimal repair cost charged per failure during the warranty 

c2 : minimal repair cost charged per failure after the warranty expires 

c3 : overhaul cost 

c4 : replacement cost 

e(t)  : salvage (or trade-in) value at age t 

c4(t)    : replacement cost at age t 

h(t, t+s) : expected number of failures during s for a machine with age t 

j : evaluation point at the beginning of any operation interval, j=    

  0,1,…N 

N : evaluation number during respective planning period (N integer, s  

  = T /N) 

s : operation interval (between evaluation points) 

t : machine age at j 
T : planning horizon 

w : the warranty period, w n s  (n=1, 2,…) 

xj : decision alternatives at j, xj = {K, O, R} 

 : machine age reduction due to overhaul decision 

() : failure intensity function 
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